
Certified Byzantine Consensus with Confidential Quorum
for a Bitcoin-derived Permissioned DLT

M. Benedetti, F. De Sclavis, M. Favorito, G. Galano, S. Giammusso, A. Muci, M. Nardelli

Applied Research Team (ART) - IT Department - Bank of Italy*

25/26-May-23 DLT23 1

DLT23: 5th Distributed Ledger Technology Workshop, May 25-26, 2023, Bologna, Italy

*The views expressed in this presentation are those of the authors and do not necessarily reflect those of the Bank of Italy

25/26-May-23 DLT23 2

Introduction

A federation of independent actors

Validator (e.g. Central Bank)

Validator (e.g. Central Bank)

25/26-May-23 DLT23 3

Introduction

A federation of independent actors

Validator (e.g. Central Bank)

Validator (e.g. Central Bank)

Who cooperate to grow a Bitcoin-like

Proof-of-Authority (PoA) blockchain

25/26-May-23 DLT23 4

Introduction

A federation of independent actors

Validator (e.g. Central Bank)

Proof-of-work is disabled (50% success probability). Blocks are valid iff they include a solution to a specific block challenge. A challenge can

be a set of 4 public keys out of which 3 signatures are required (3-of-4 OP_CHECKMULTISIG), or a Taproot tweaked public key. A solution is the

corresponding witness.

Validator (e.g. Central Bank)

Who cooperate to grow a Bitcoin-like

Proof-of-Authority (PoA) blockchain

25/26-May-23 DLT23 5

Introduction

A federation of independent actors

Validator (e.g. Central Bank)

Validators jointly create

blocks by adding the solution

(e.g., signatures)

Validator (e.g. Central Bank)

Who cooperate to grow a Bitcoin-like

Proof-of-Authority (PoA) blockchain

25/26-May-23 DLT23 6

Introduction

A federation of independent actors

Validator (e.g. Central Bank)

Validator (e.g. Central Bank)

Who cooperate to grow a Bitcoin-like

Proof-of-Authority (PoA) blockchain

25/26-May-23 DLT23 7

Introduction

A federation of independent actors

Participant
(e.g. Commercial Bank)

Participants verify the validity of the block

with respect to the challenge

Validator (e.g. Central Bank)

Who cooperate to grow a Bitcoin-like

Proof-of-Authority (PoA) blockchain

25/26-May-23 DLT23 8

Introduction

A federation of independent actors

Participant
(e.g. Commercial Bank)

Validator (e.g. Central Bank)

1 minute block time (vs 10 minutes of PoW)

Who cooperate to grow a Bitcoin-like

Proof-of-Authority (PoA) blockchain

25/26-May-23 DLT23 9

Introduction

Smart contracts

as in DLC?, zkSNARK?

Large value payments

as in Bitcoin Script

Small value payments

as in Lightning Network

Tokenization and DvP

as in RGB?, Taro?, Ord?, BRC-20?

Who cooperate to grow a Bitcoin-like

Proof-of-Authority (PoA) blockchain

Validator (e.g. Central Bank)

Enables the reuse of an existing and powerful

technological stack in a permissioned setting

Participant
(e.g. Commercial Bank)

A federation of independent actors

25/26-May-23 DLT23 10

Validator (e.g. Central Bank)
Participant

(e.g. Commercial Bank)

25/26-May-23 DLT23 11

Validator (e.g. Central Bank)
Participant

(e.g. Commercial Bank)

25/26-May-23 DLT23 12

System model

Validator (e.g. Central Bank)
Participant

(e.g. Commercial Bank)

Participants network with ⁓1000s of nodes, connected in a spontaneous

and not predefined topology

Permissioned “mining” network with N ∈ [4, ⁓20] nodes,

geographically distributed and connected in a full-mesh topology.

Mining Node = Bridge Node + Consensus Node

Up to F mining nodes can fail arbitrarily and N>3F

Network is weakly synchronous

25/26-May-23 DLT23 13

Requirements

Validator (e.g. Central Bank)
Participant

(e.g. Commercial Bank)

Correctness: transactions should be valid and properly authorized

Safety: finality of transactions should be deterministic (no forks)

Liveness: transactions should be validated also when F nodes fail

Calmness: blockchain should not grow too fast

Confidentiality (with no faulty miners): the block solution should not reveal

information to participants about the miners configuration and quorum

25/26-May-23 DLT23 14

Contribution: a combination of 3

2. Blockchain platform

1. Byzantine Fault Tolerant consensus algorithm

3. Threshold signature scheme

FROST

PBFT

BTC

25/26-May-23 DLT23 15

Contribution: a combination of 3

2. Blockchain platform

1. Byzantine Fault Tolerant consensus algorithm

3. Threshold signature schemePBFT

Used to agree on the next block. PBFT is chosen for

its “simple” implementation compared to newer

and more scalable alternatives, because of our

limited interest in on-ledger scalability.

Used as the architectural solution for maintaining a

shared ledger among participants.

FROST

BTC

25/26-May-23 DLT23 16

Combining PBFT with BTC

In a nutshell, PBFT is a state machine replication algorithm, that executes operations on a deterministic

state machine, upon requests by clients. It has a client-server interaction pattern, in which the clients

request an operation, and the replicated server executes the operation and provides the result back to the

client

25/26-May-23 DLT23 17

Combining PBFT with BTC

Our replicated state machine has one operation only, i.e., “append block”, and only one abstract client, i.e.,

the participants network, which invokes the operation every target block time. Requests can be self-

generated by replica, avoiding trusted clients which would represent a single point of failure.

25/26-May-23 DLT23 18

Combining PBFT with BTC

The “append block” operation is not entirely defined, since its result depends on the actual block that is

appended (e.g., on the selected transactions). We let the primary select the actual block and solving this

form of “non-determinism”.

25/26-May-23 DLT23 19

Combining PBFT with BTC

During the prepare phase, backups independently verify the content of the block received by the primary

and broadcast the prepare message.

25/26-May-23 DLT23 20

Combining PBFT with BTC

During the commit phase, replica can start the signing process...

25/26-May-23 DLT23 21

Contribution: a combination of 3

2. Blockchain platform

1. Byzantine Fault Tolerant consensus algorithm

3. Threshold signature schemePBFT

Used as the architectural solution for maintaining a

shared ledger among participants.

FROST

BTC

Used to agree on the next block. PBFT is chosen for

its “simple” implementation compared to newer

and more scalable alternatives, because of our

limited interest in on-ledger scalability.

25/26-May-23 DLT23 22

Contribution: a combination of 3

2. Blockchain platform

1. Byzantine Fault Tolerant consensus algorithm

3. Threshold signature schemePBFT

Used as the architectural solution for maintaining a

shared ledger among participants.

Used to aggregate a quorum of signature shares

and produce a single signature that is used as a

block solution. FROST* is chosen because it

works with Schnorr signatures that have been

recently introduced in our blockchain platform

via Taproot

FROST

BTC
*Komlo, Chelsea, and Ian Goldberg. "FROST: flexible round-
optimized Schnorr threshold signatures." Selected Areas in
Cryptography: 27th International Conference, Halifax, NS,
Canada (Virtual Event), October 21-23, 2020, Revised Selected
Papers 27. Springer International Publishing, 2021.

Used to agree on the next block. PBFT is chosen for

its “simple” implementation compared to newer

and more scalable alternatives, because of our

limited interest in on-ledger scalability.

25/26-May-23 DLT23 23

Combining PBFT with FROST
During the commit phase, the block is already agreed and could already be signed by replicas. Indeed, a

naïve PBFT implementation based on the concatenation of signatures can mingle commit and signing: each

signature can be piggybacked to the commit message, and the first node gathering a Byzantine Quorum

(2F+1) of signatures can assemble and broadcast a valid block.

Nevertheless, when we move from signatures to signature shares to aggregate with FROST, an issue

arises… The problem is known as Frostland.

25/26-May-23 DLT23 24

The Frostland problem

Validator (e.g. Central Bank)

Validator (e.g. Central Bank)

Ruffing, Tim, et al. "ROAST: Robust Asynchronous Schnorr Threshold Signatures." IACR Cryptol. ePrint Arch. 2022
(2022): 550.

25/26-May-23 DLT23 25

The Frostland problem

Validator (e.g. Central Bank)

Validator (e.g. Central Bank)

Ruffing, Tim, et al. "ROAST: Robust Asynchronous Schnorr Threshold Signatures." IACR Cryptol. ePrint Arch. 2022
(2022): 550.

25/26-May-23 DLT23 26

The Frostland problem

Validator (e.g. Central Bank)

Validator (e.g. Central Bank)

Ruffing, Tim, et al. "ROAST: Robust Asynchronous Schnorr Threshold Signatures." IACR Cryptol. ePrint Arch. 2022
(2022): 550.

25/26-May-23 DLT23 27

The Frostland problem

Validator (e.g. Central Bank)

Validator (e.g. Central Bank)

Ruffing, Tim, et al. "ROAST: Robust Asynchronous Schnorr Threshold Signatures." IACR Cryptol. ePrint Arch. 2022
(2022): 550.

25/26-May-23 DLT23 28

The Frostland problem

Validator (e.g. Central Bank)

Validator (e.g. Central Bank)

Ruffing, Tim, et al. "ROAST: Robust Asynchronous Schnorr Threshold Signatures." IACR Cryptol. ePrint Arch. 2022
(2022): 550.

Validators may refuse to sign even after their logo

has been collected and stamped into the document!!

25/26-May-23 DLT23 29

Signing blocks with FROST – 3FBFT

3FBFT: During the commit phase, each correct node creates a new signature share for all possible 𝑁
𝑘

combinations of

k actual signers out of N possible signers and appends all the shares to the commit message. Any node receiving a
Byzantine quorum of commit messages can aggregate shares and broadcast the block. Optimizes the number of
rounds but has a more than exponential complexity. Suitable only in very small mining networks.

25/26-May-23 DLT23 30

Signing blocks with FROST - FBFT

FBFT: Appends two new rounds to PBFT, one to send the “document to sign” and one to collect signature shares from
the signers. The primary aggregates shares and broadcasts the block. As demonstrated in ROAST, this terminates in a
number of additional rounds that is linear with N, if the primary does not fail. Otherwise, timeout expires, and the
view change is used to guarantee liveness.

25/26-May-23 DLT23 31

Experimental results

Geographically distributed benchmarking environment across 8 AWS European regions (Ireland, Germany,

Italy, France, Sweden, England, Switzerland, Spain).

25/26-May-23 DLT23 32

Experimental results

Geographically distributed benchmarking environment across 8 AWS European regions (Ireland, Germany,

Italy, France, Sweden, England, Switzerland, Spain).

According to https://www.cloudping.co/grid inter-region latency in those European regions averaged between

10ms and 50ms in the last year.

https://www.cloudping.co/grid

25/26-May-23 DLT23 33

Experimental results, signature size and latency

The first results compare the block solution size and the latency of FBFT against PBFT (baseline) and 3FBFT,

in absence of load

25/26-May-23 DLT23 34

Experimental results, signature size and latency

When signature aggregation is not used, the block solution size grows linearly with the number of nodes.

With FROST, the signature solution size is constant.

657bytes

67bytes

25/26-May-23 DLT23 35

Experimental results, signature size and latency

3FBFT has performances that are comparable with PBFT for small mining networks, but the latency sharply

increase when the number of nodes grows. FBFT has just a reasonable increment in consensus latency with

respect to PBFT.

⁓0.5s

⁓0.85s

⁓19s

⁓1.7s

25/26-May-23 DLT23 36

Experimental results, throughput

25/26-May-23 DLT23 37

Experimental results, impact of transactional load

⁓13s

25/26-May-23 DLT23 38

Experimental results, protocol dominance w/ load

⁓13s

⁓65%

⁓29%

⁓6%

25/26-May-23 DLT23 39

Experimental results, impact of failures (worst case)

25/26-May-23 DLT23 40

Conclusions

• We presented a PoA Bitcoin-derived permissioned DLT, in which blocks are signed by a federation of

independent actors and transactions enjoy deterministic finality;

• Using PBFT, the federation can operate also in presence of Byzantine failures of a subset of its members,

providing high availability and fault tolerance;

• Using FROST, the signatures of the federation members are aggregated, improving the block space

usage efficiency and preserving the confidentiality of the mining network configuration and its quorums;

• We evaluated our algorithm in a geographically distributed environment, showing that FBFT can satisfy

all our requirements for just a reasonable increment in consensus latency;

• In the future, we plan to evolve our architecture towards different research directions: dynamic

federations, fairness, privacy and scalability

25/26-May-23 DLT23 41

Everything is open source!

https://bancaditalia.github.io/itcoin

Thanks for
your

attention!

	Slide 1: Certified Byzantine Consensus with Confidential Quorum for a Bitcoin-derived Permissioned DLT
	Slide 2: Introduction
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Introduction
	Slide 7: Introduction
	Slide 8: Introduction
	Slide 9: Introduction
	Slide 10
	Slide 11
	Slide 12: System model
	Slide 13: Requirements
	Slide 14: Contribution: a combination of 3
	Slide 15: Contribution: a combination of 3
	Slide 16: Combining PBFT with BTC
	Slide 17: Combining PBFT with BTC
	Slide 18: Combining PBFT with BTC
	Slide 19: Combining PBFT with BTC
	Slide 20: Combining PBFT with BTC
	Slide 21: Contribution: a combination of 3
	Slide 22: Contribution: a combination of 3
	Slide 23: Combining PBFT with FROST
	Slide 24: The Frostland problem
	Slide 25: The Frostland problem
	Slide 26: The Frostland problem
	Slide 27: The Frostland problem
	Slide 28: The Frostland problem
	Slide 29: Signing blocks with FROST – 3FBFT
	Slide 30: Signing blocks with FROST - FBFT
	Slide 31: Experimental results
	Slide 32: Experimental results
	Slide 33: Experimental results, signature size and latency
	Slide 34: Experimental results, signature size and latency
	Slide 35: Experimental results, signature size and latency
	Slide 36: Experimental results, throughput
	Slide 37: Experimental results, impact of transactional load
	Slide 38: Experimental results, protocol dominance w/ load
	Slide 39: Experimental results, impact of failures (worst case)
	Slide 40: Conclusions
	Slide 41: Everything is open source!

