Verifying liguidity of Bitcoin contracts

(oral communication)
Massimo Bartoletti Roberto Zunino
Universita di Cagliari Universita di Trento

DLT 2019, Pisa, 2019-02-12

The life of smart contracts, simply put

Smart contracts: basic workflow

A 1BTC.
Stipulation Contract, 3BTC
B, 2BTC
C1, 3BTC
=
Execution C,3BTC » C2,3BTC e

(state updates)

¢ ™ c3 3BTC

contracts describe possible moves (transition system)
participants choose which moves to perform (strategy)

A, 2BTC

Termination C’, 3BTC

/
\

B, 1BTC

Designing low-level smart contracts is hard!

Tnit
certifies that all players have placed their bets (and deposits)

Win(m,a) withe#7C a
certifies that ¢ has won all the rounds until = in[p]: Betp
(included) VpeP :{ in-script[p]: si
Pt[r]: sigx, (per,)(®)

Timeoutl () v . out-script[p](T, o): verk(m,(T,o)
in: Timeoutl(m, b, a) S { value[p]: 1+ di3
in-scri pt: SigK(Timeoutl ,m,b,a) (.)

Win (a, a) (leaf)

Timeout2 (b)

in: Timeout2(m, a, b)

In-script: Sng(TimeoutE,’ﬂ',a,b)(.)

Turn2fst (b, 5a, 8y)

in: Turn2(m, a, b)

in-script: 84, 85, Si8K (1ume,r,0) (®)

contains the bet (and deposit) of a at the first round

in: Init[a]
in-script: Sig(snit,q) (®)

out-script(T, o): Verx(win,as,o)(T,0)
value: 1 4+ dB

Turn2snd (b, 84, 85)

in: Turn2(m, b, a)
in-script: §;,,§n,sigK(Tum2ma)(o)

out-script(T, 0): verk(win,x,qa)(T,0)
V Verk(winto,r,q)(T, o)
value: (14 d) 251113

Win (e, a) (root)

certifies that ¢ has won the lottery

[(Variants as for Win(r, a))

out-script[a](T,0): verk, (coect)(T,0)
value[a]: N + dB3

_ [out-script[p](T,0): verk, (coliect)(T,0)
Vp#a: { value[p]: dB

Turnl(m,a,b) with7C a,b
certifies that o and b are playing in match ~,

where it is a’s turn to reveal her secret

Turn2(m,a,b) with7wC a,b
certifies that a and b are playing in match 7, where a

has revealed her secret, and now it is b’s turn

in[0]: Win (70, a)
in-script[0]: - sigc(win,xo,0) (%)

in[1]: Win(x1, b)
in-script[1]: sigx(win,x1,0)(®)

out-script(T, §,,0):
(H(8.) = hi A Verx(rurni,=,a,0)(T,0))
V Verk(rurni10,x,a,0)(T,0)

value: (1 +d) 251711

Secret (3,)
in: Turnl(m, a, b)
in-script: §,, SigK(Tumz,r,(,,h)(°)
out-script(T, §., §, 0):
(H(3.) =hT A H(3,)=h]
A verK(Tumz,n,wmnw(a,b,gu,sh))(T70'))

V VerK(TurneTo,x,q,0)(T:)
value: (14 d) 24~ 1113

Timeoutl(m, a,b) withwC a,b
certifies that a lost against b in match 7 because

she did not reveal her secret in time

Timeout2(m, a,b) with7C a,b
certifies that b lost against ¢ in match 7 because

she did not reveal her secret in time

in: Turnl(m, a, b)
in-script: L, Sigx (rumiT0,x.0,0)(®)

in: Turn2(m, a, b)
in-script: L, L, SigK(Tuszo,w,a,,h)(°)

out-script(T, U): VerK (Timeoutl,x,a,b) (T7 U)
value: (1 +d) 2517113
lockTime: 71 + (L — |7| — 1)TRound + 2TLedger

Out-SCFipt(T, U): VerK (Timeout2,r,a,b) (Ta U)
value: (1+d)2"~1"113
lockTime: 71 + (L — |7| — 1)Tround + 4TLedger

CollectOrphanWin (7, a)

withe Z7 C a
certifies that o was prevented by an adversary to participate in the rounds

after m, but she can collect her winnings so far (see Theorem 5 for details)

A lottery smart contract

on Bitcoin
[BITCOIN 2017]

Very error-prone to design!
Hard to guarantee security

We need high level languages:

EVM — Solidity
Bitcoin — BItML

BitML in a nutshell

= A high-level language for smart contracts on Bitcoin

[ACM CCS 2018]

= Main features:

= Depositing / withdrawing cryptocurrency
= Committing to secrets (& revealing them)
= Time constraints

= Authorization-enabled actions

= Not Turing-complete, but can model timed commitment,
escrow contracts, micropayment channels, lotteries, ...

BitML Contract Example

init {A: 1B, secreta
B : 1B, secret b}

(reveal a.
(reveal b. if(a 4+ b)%2 =0
then withdraw A
else withdraw B
+after2 -t : withdraw A)
+aftert : withdraw B)

BitML security

= Computationally sound compilation to Bitcoin

no BitML attacks —> no Bitcoin attacks

= To guarantee Bitcoin-level security, we still need to verify
BitML code against desirable properties

= Liquidity is a desirable general property of smart contracts

Liquidity

= Let S be a strategy for a participant interacting with a
given contract C

= |ntuition:
S is liquid for C iff, even in the presence of adversaries, S

can eventually cause the contract balance to be assigned
to participants (in some way)

reveal a. reveal b. split(1B — withdrawA | 1B — withdrawB)
no liquid strategy for A

reveal a.
(reveal b. split(1B — withdrawA | 1B — withdrawB)

+after ¢ . withdraw A) liquid strategy for A: reveal and wait

Ethereum Parity attack violated liquidity

Liquidity variants

= Basic: from any reachable state of C, strategy S can
perform a sequence of moves “liquidating” C

= Multiparty: a set of participants cooperate to make C
terminate

= Quantitative: we don’t need C to terminate, as long as a
large enough part of its balance is distributed

= Known/unknown secrets: S should be able to “liguidate” C
no matter what the adversary secrets are

C1, 2BTC

new deposits

A, 1BTC

newly
stipulated
contracts?

BitML Abstraction

secret b

secret a
C3, 5BTC
B, 7BTC
C4, 3BTC

The BitML transition system is infinite-state, infinite branching, and timed

10

BitML Abstraction

Focus on a given contract, only, and forget the irrelevant part of the configuration

CT

TC

new

osits

secret a
S tbh
B. 2BTC CZNBTC
‘ C3, 5BTC ‘
Abstract time
- exploiting C3
C4, C

The abstract transition system is now finite-state!

11

= Qur abstraction is sound and complete w.r.t. liquidity

[to appear in POST 2019]

= Corollary: liquidity in BitML is decidable

= Verification tool in development (by UniCA)

12

Further directions

= Strategy inference

= Given a contract, find a strategy for a participant
maximizing their payoff

= Probabilistic analysis

= E.g. what is the average payoff?

= Useful for lotteries

13

Thank you

(all papers available on IACR)

14

