
Verifying liquidity of Bitcoin contracts 
(oral communication)

DLT 2019, Pisa, 2019-02-12

Massimo Bartoletti
Università di Cagliari

Roberto Zunino
Università di Trento



2

The life of smart contracts, simply put 



3

Smart contracts: basic workflow

A, 1BTC

B, 2BTC

Contract, 3BTCStipulation

C, 3BTCExecution
(state updates)

C2, 3BTC

C1, 3BTC

C3, 3BTCφ

contracts describe possible moves (transition system)
participants choose which moves to perform (strategy)

A, 2BTC

B, 1BTC

C’, 3BTCTermination



4

Designing low-level smart contracts is hard!

We need high level languages:

EVM → Solidity
Bitcoin → BitML

A lottery smart contract
on Bitcoin

[BITCOIN 2017]

Very error-prone to design!
Hard to guarantee security



5

BitML in a nutshell

 A high-level language for smart contracts on Bitcoin
[ACM CCS 2018]

 Main features:
 Depositing / withdrawing cryptocurrency 
 Committing to secrets (& revealing them)
 Time constraints
 Authorization-enabled actions

 Not Turing-complete, but can model timed commitment, 
escrow contracts, micropayment channels, lotteries, ...



6

BitML Contract Example



7

BitML security

 Computationally sound compilation to Bitcoin

no BitML attacks ⇒ no Bitcoin attacks

 To guarantee Bitcoin-level security, we still need to verify 
BitML code against desirable properties

 Liquidity is a desirable general property of smart contracts



8

Liquidity

 Let S be a strategy for a participant interacting with a 
given contract C

 Intuition:
S is liquid for C iff, even in the presence of adversaries, S 
can eventually cause the contract balance to be assigned 
to participants (in some way)

 Ethereum Parity attack violated liquidity

no liquid strategy for A

liquid strategy for A: reveal and wait



9

Liquidity variants

 Basic: from any reachable state of C, strategy S can 
perform a sequence of moves “liquidating” C

 Multiparty: a set of participants cooperate to make C 
terminate

 Quantitative: we don’t need C to terminate, as long as a 
large enough part of its balance is distributed

 Known/unknown secrets: S should be able to “liquidate” C 
no matter what the adversary secrets are



10

BitML Abstraction

A, 1BTC

B, 2BTC

C1, 2BTC

C2, 1BTC

C3, 5BTC
B, 7BTC

secret a

secret b

revealed c

C4, 3BTC
newly

stipulated
 contracts?

The BitML transition system is infinite-state, infinite branching, and timed

new deposits



11

BitML Abstraction

A, 1BTC

B, 2BTC

C1, 2BTC

C2, 1BTC

C3, 5BTC
B, 7BTC

secret a

secret b

revealed c

C4, 3BTC
newly

stipulated
 contracts?

The abstract transition system is now finite-state!

Focus on a given contract, only, and forget the irrelevant part of the configuration

Abstract time
exploiting C3

new deposits



12

Main Result

 Our abstraction is sound and complete w.r.t. liquidity
[to appear in POST 2019]

 Corollary: liquidity in BitML is decidable

 Verification tool in development (by UniCA)



13

Further directions

 Strategy inference
 Given a contract, find a strategy for a participant 

maximizing their payoff

 Probabilistic analysis
 E.g. what is the average payoff?
 Useful for lotteries



14

Thank you

(all papers available on IACR)


