THE GRAPH STRUCTURE OF BITCOIN

Damiano Di Francesco Maesa⁽¹⁾, Andrea Marino⁽²⁾, Laura Ricci⁽²⁾

⁽¹⁾Dep .of Computer Science and Technology, University of Cambridge ⁽²⁾Dep. of Computer Science, University of Pisa

DLT 2019: 2nd Distributed Ledger Technology Workshop Pisa – February 2019

OVERVIEW

- main goals of our work:
 - analyze the bow tie graph structure, originally attributed to the Web, in the case of the Bitcoin users graph.
 - link the connectivity structure of the Bitcoin users graph to the economical activity of its nodes.
- characteristics of the Bitcoin users graph:
 - nodes augmented with balance
 - edges
 - weighted with the Bitcoin value exchanged.
 - paired with the temporal time stamp of creation

THE STRUCTURE OF BITCOIN TRANSACTIONS

THE COMMON INPUT HEURISTICS

- If a Bitcoin transaction spends unspent transaction outputs belonging to different addresses
- common input heuristics: assume that the issuer of the transaction is the owner of all of the associated addresses
- trasform the address graph into the users graph

THE USERS GRAPH

- Clustering algorithm
 - builds a graph G where an edge exists between the 2 addresses A1 and A2 if and only if they appear as input of the same transaction
 - find the connected components of G
 - linear complexity
- Users graph
 - nodes are cluster
 - an arc from cluster CI to C2 exists whether there exists a transaction from an address of CI to an address of C2.

THE BOW TIE STRUCTURE OF THE USERS GRAPH

ECONOMICAL INTERPRETATION OF THE GRAPH

- our goal:
 - linking the bow tie structure to the economical activity of the nodes
- metrics used to characterize the components of the bow tie
 - AddrNum: number of addresses in a cluster.
 - Balance
 - ValueRec: sum of the payment received
 - Transln: number of payments received (including coinbase)
 - TransOut: number of payments done

ECONOMICAL INTERPRETATION OF THE GRAPH

- In the SCC
- a sensibly large number of addresses
- dominates all metrics, but not current balance
- high discrepancy between the current balance and total value received by clusters
- large part of the balance credited to clusters in OUT
- SCC contains the really active clusters of the economy.

COINBASE TRANSACTIONS

- the Proof of Work requires an important computational effort
- the resources dedicated to PoW are expensive
 - an incentive mechanism is defined to reward miners
- a reward is collected by the miner finding a block
 - sum of all fees of the transactions contained in the block, plus a fixed amount
 - reward is credited to the miner through a special coinbase transaction
- miners can be located in the bow tie through the analysis of the coinbases.

ANALYSIS OF THE COINBASE TRANSACTIONS

NumCoinbase

- number of payments received from coinbase transactions,
- UniqueCoinBase
 - number of clusters that received at least one payment from a coinbase transaction
- BalanceCoinBase
 - total value received from coinbase transactions,

ANALYSIS OF THE COINBASE TRANSACTIONS

- clusters that have received at least one coinbase transaction mainly belong to IN
- IN nodes
 - corresponds mainly to miners
 - obtain new bitcoin as mining rewards
 - spend them inside the "SCC economy"

TEMPORAL ANALYSIS OF THE BOW TIE

- studying the evolution of the bow tie components
 - the blockchain includes the entire history of the Bitcoin system
- divide the timespan of our dataset in 20 temporal snapshots
 - all equal in duration (2 months) except the first one.
 - from january 2013 to december 2015
- older graph is a subgraph of a newer one, but nodes may change their roles in the bow tie

TEMPORAL ANALYSIS OF CLUSTER BALANCE

- cumulative current balance of the SCC component remains stable
- cumulative current balance of OUT increases over time.

EVALUATION OF THE TEMPORAL STABILITY

- IN is temporally stable and a few nodes leave this component
- OUT continuously grows over time: the number of nodes that join is higher than the non negligible number of nodes that leaves.

CONCLUSIONS

- most economical exchanges performed by clusters in SCC.
- current balance mostly contained in OUT.
 - current balance of the SCC remains somewhat stable, while the cumulative current balance of OUT increases over time.
- more and more value actually passes and is used by the nodes in the SCC, but is temporary stored in the OUT component
 - values in OUT: currently unspent outputs/ cold storage
- most miners contained in IN and these miners receive higher rewards with respect to those in SCC

FUTURE WORKS

- more sophisticated deanonymization techniques to discover the economical meaning of the nodes in the bow tie.
- perform the same analysis for the graph obtained from the Ethereum blockchain
 - comparing the economies of the two cryptocurrencies.