
Ethereum Transaction and Smart 
Contracts among Secure Identities

Francesco Buccafurri, Gianluca Lax, Lorenzo Musarella and Antonia Russo
lorenzo.musarella@unirc.it, PhD Student

University «Mediterranea» of Reggio Calabria

2nd Distributed Ledger Technology Workshop (DLT 2019)

Pisa, 11/02/19

mailto:lorenzo.musarella@unirc.it


2

Agenda
01

02

03

Background
Blockchain, eIDAS, IBE

Our Proposal
The scenario and our solution

Conclusion



01. Background
Blockchain, eIDAS, IBE



4

Blockchain



5

Blockchain
Blockchain 2.0 and Smart Contracts

Two kinds of accounts:
1. EOAs
2. Smart Contracts (SC)

Messages and Transactions:
• Messages are sent from a SC to another SC
• Transactions are sent from EOAs

What if an EOA isn’t registered yet on the service of the application platform
implemented over Blockchain?



6

Public Digital Identity System
It must be compliant with the eIDAS regulation1

1. https://ec.europa.eu/futurium/en/content/eidas-regulation-regulation-eu-ndeg9102014

• We refer to the Italian System of Public Digital Identity (SPID)

• Digital Identities are independent from the specific application platform. This allows
the design of flexible, dynamic and interoperable services

• It is necessary to find a secure way to link digital identities with Ethereum addresses



7

Identity Based Encryption
Basics

• Identity-based systems allow any party to generate a public key from a known
identity value such as an ASCII string (e.g., email address);

• Identity-based systems requires a Private Key Generator (PKG) as Trusted Third
-Party;



8

Identity Based Encryption
IBE architecture

• The PKG generates both Master Private Key an
d Master Public Key from the known identity (e.g
Bob’s email);

• The PKG stores the Master Private Key while it
publishes the Master Public Key;

• In this way, there is no need to distribute public
keys ahead of exchanging encrypted data;



9

Identity Based Encryption
IBE architecture

• When Alice wants to send an encrypted messa
ge to Bob, she has to know ID-Bob (e.g, Bob’s
email);

• She takes from PKG the Master Public Key of ID
-Bob and she computes the Bob’s public key cor
responding to the identity by combining the Mast
er Public Key and the ID-Bob;

• She sends the encrypted message;

• When Bob receives the message, he must auth
enticate to the PKG to obtain his private key;



10

Identity Based Encryption
IBE architecture

• After the successful authentication, PKG gen
erates, from ID-Bob’s Master Private Key, the
private key and PKG gives it to Bob;

• Now Bob can decrypt the message received
from Alice.



02. Our Proposal
The scenario and our solution



12

Our Proposal
The scenario



13

Our Proposal
The scenario: actors

• In our solution, we have the following types of entity:

o An user using a digital identity for authentication;

o A public identity digital system with Identity Provider IP;

o An IBE system with PKG;

o A Distributed Ledger allowing smart contracts (Ethereum).



14

Our Proposal
The scenario: types of operation carried out by users

1. Digital Identity Registration:

A public digital identity is identified by the pair < "#$%&'($, *+ >, where IP is the
identifier of the Identity Provider and the username is a string.

Furthermore, any Public Digital Identity System compliant with the eIDAS defines
also an Universal ID UID.



15

Our Proposal
The scenario: types of operation carried out by users

2. IBE private key gathering:

• As we said before, to obtain the IBE private key, a user must contact the PKG of

the IBE service and he must authenticate successfully to the PKG;

• Then, the PKG authenticates the user by an eIDAS-compliant scheme.



16

Our Proposal
The scenario: types of operation carried out by users

SAML 2

• IBE acts as a Service Provider;

• The structure is compliant with
SAML 2;



17

Our Proposal
The scenario: types of operation carried out by users

3. Blockchain Binding

• In this operation, an user associates his IBE public key !"#$% with his blockchain a
ddress &;

• First, the user generates a pair of private and public blockchain keys;

• The blockchain address & is computed as the cryptographic hash of the public key;



18

Our Proposal
The scenario: types of operation carried out by users

3. Blockchain Binding

• Then, the user generates a transaction from ! to ! on the blockchain, having in the
data field < #$%, ' ! >;

• #$% is the Universal ID, while ' ! is the encryption of the blockchain address with
the IBE private key, so that only him can compute ' ! ;

• This transaction is called binding transaction;

• The user links his public digital identity to the blockchain address !.



19

Our Proposal
The scenario: types of operation carried out by users

4. Transaction

Let suppose that Alice wants to send to Bob ! value (cryptocurrency, token, …) with
a blockchain transaction/operation:

• First, she obtains the "#$%&' and she calculates the corresponding public key
#()*+;

• By calling a function of the smart contract, she looks for a binding transaction B w
ith < "#$%&', ) .%&' > in the data field:

o If she finds it, she uses #()*+to deciphers ) .%&' to verify the authenticity of
the signature;



20

Our Proposal
The scenario: types of operation carried out by users

4. Transaction

o If the check is ok, Alice has obtained Bob’s blockchain address !"#$ and
she can proceed with the transaction.

• If Alice does not find the binding transaction B with < &'("#$, * !"#$ > in the
data field, this means that Bob exists but he does not joined yet the blockchain.

• So, what happens now?



21

Our Proposal
The scenario: types of operation carried out by users

4. Transaction

• Alice generates a blockchain transaction from !"#$%& to a Smart Contract !'(
specifying both )*+,-. and 2;

• The smart contract will store this sleeping transaction from !"#$%& to !,-. with
value 2.



22

Our Proposal
The scenario: types of operation carried out by users

5. Cashing

• This operation is carried out by an user who wants to receive the sleeping transa
ction sent to him before his registration (in our example, Bob).

• Bob generates a blockchain transaction, named cashing transaction from him to
the smart contract, specifying his !"#$%& in the data field (cash function in the sm
art contract code);

• If the smart contract finds a binding transaction corresponding, it computes the
"$'() calculated from the !"#$%&.



23

Our Proposal
The scenario: types of operation carried out by users

5. Cashing

• To do that, the smart contract uses an Oracle (we used Oraclize), which returns th
e !"#$ from the %&'"#$ following these steps:

o the Oracle looks for the IBE public key &"()* associated to %&'"#$ and it tries t
o decipher ((!"#$) with &"()*;

o If it obtains !"#$, the cashing process can continue because %&'"#$ was succ
essfully verified;

o Else, the user who claimed the sleeping values was not really Bob.



24

Our Proposal
The scenario: types of operation carried out by users

5. Cashing

• At the end, the smart contract extracts from the stored sleeping transactions those
sent to Bob (if they exists);

• It is generated a new transaction to !"#$ for each sleeping transaction found.



25

Our Proposal
Smart Contract



03. Conclusion



27

Conclusion

• We enable on Ethereum the possibility to send money to users without the need to
know their blockchain address or when they are not registered yet on the service;

• The suitable use of the secure digital identity guarantees that only the correct user
receives money.

• In this work, we only treat the case in which a given amount of cryptocurrency is
transferred, but the transfer of tokens with identifier can be easily implemented by
using, for example, the interface ERC721.



Lorenzo Musarella
lorenzo.musarella@unirc.it

PhD Student


