Ethereum Transaction and Smart
Contracts among Secure ldentities


mailto:lorenzo.musarella@unirc.it

Agenda

Background
Blockchain, elDAS, IBE

Our Proposal
The scenario and our solution

Conclusion




01. Background

Blockchain, elDAS, IBE




\STUDI p,
M e

NWVERSI,
o A,
3
P o
Nayavo O

2, >
diterra®™®

expectations

4

Blockchalin

Hype Cycle for Blockchain Business, 2018

Blockchain Reward Models
Initial Coin Offering
inin

Blockchainin Insurance

in C

Blockchainin Logistics

Ledgers

in in Supply Chain
and Trz o

in

Internet of Things

Blockcha
B

inin Life Sciences
3lockchain in Utilities
chain in Healthcare,

Things as

Customers
Blockchain in
Oil and Gas

art Contracts

Blockchain in Banking and Investment Services

Complementary Currency

D P
Blockchain Business Models
Ricardian Contracts i
Blockchainin Retail ~ XCrPiocurencies
The Blockchain in Media and
i Y i Digital Commodity Exchanges
Digital/Cryptocurrency Fiat Blockchain in Manufacturing Green Mone:
Stable Cryptocurrency Blockchain for CSPs Y
" | - Blockchain-Based ACH Payments
Blockehain for Adyertising Blockchain for Customer Service
As of July 2018
Peak of
Innovation Trough of " Plateau of
Trigger _ Inflated Disillusi Slope of F ivity
time ”
obsolete

Plateau will be reached in:

Olessthan2years O2to5years @ 5to 10 years

gartner.com/SmarterWithGartner

© 2018 Gartner, Inc. and/or its affiliates. Al rights reserved. Gartner is a registered trademark

of Gartner, Inc. or its affilia

tes.

A more than 10 years ~ ® before plateau

Gartner



Blockchalin

Blockchain 2.0 and Smart Contracts

Two kinds of accounts: ‘
1. EOAs
2. Smart Contracts (SC) v

ethereum

Messages and Transactions:
* Messages are sent from a SC to another SC
» Transactions are sent from EOAs

What if an EOA isn’t registered yet on the service of the application platform
implemented over Blockchain?




©  Public Digital Identity System

It must be compliant with the elDAS regulation’

« Digital Identities are independent from the specific application platform. This allows
the design of flexible, dynamic and interoperable services

spad

Sistema Pubblico
di Identita Digitale

* We refer to the Italian System of Public Digital Identity (SPID)

« Itis necessary to find a secure way to link digital identities with Ethereum addresses

1. https://ec.europa.eu/futurium/en/content/eidas-regulation-regulation-eu-ndeg9102014

6



© Identity Based Encryption

Basics

« |dentity-based systems allow any party to generate a public key from a known
identity value such as an ASCII string (e.g., email address);

 |dentity-based systems requires a Private Key Generator (PKG) as Trusted Third
-Party;




© Identity Based Encryption

Sditerra™

Public Key Generator (PKG) IBE architecture
@4 Authencation with I0-Bob « The PKG generates both Master Private Key an
ID-Bob's Master Public Key : d Master Public Key from the known identity (e.g
ID-Bob’s Private Key ’ .

LE Bob’s email);

ID-Bob's(Master Public Key, Master Private Key) ° The PKG stores the Master Private Key while it
publishes the Master Public Key;
$ * In this way, there is no need to distribute public
) ID-Bob (e.g., Bob's email) keys ahead of exchanging encrypted data;
Alice @‘ Bob

i

Cypher text
o /D-Bob's Private Key
- >
Master Public Key + ID-Bob Decryption ﬂ

Encryption




© Identity Based Encryption

Public Key Generator (PKG) IBE architecture
@4 Authentication with 10-Bob «  When Alice wants to send an encrypted messa
ID-Bob's Master Public Key : ge to Bob, she has to know ID-Bob (e.g, Bob’s
|D-Bob's Private Key .

LE email);
ID-Bob's(Master Public Key, Master Private Key) * She takes from PKG the Master Public Key of ID
-Bob and she computes the Bob’s public key cor
responding to the identity by combining the Mast

$ er Public Key and the ID-Bob;
P ID-Bob (e.g., Bob's email)
Alice @‘ Bob .  ghe sends the encrypted message;

i

Cypher text _ « When Bob receives the message, he must auth
A +/D-Bob's Private Key . . . .
[ > enticate to the PKG to obtain his private key;
Master Public Key + ID-Bob Decryption

Encryption S




)
°

ldentity Based Encryption

IBE architecture

0,
%,
2
£
7 el
T¥gyv> O

NWERS/

After the successful authentication, PKG gen

h’dl(erra“"”
Public Key Generator (PKG)
@‘ Authentication with ID-Bob N
e — erates, from ID-Bob’s Master Private Key, the
|D-Bob's Private Key . i i
LE private key and PKG gives it to Bob;
«  Now Bob can decrypt the message received

ID-Bob's(Master Public Key, Master Private Key)
from Alice.

b4
® ID-Bob (e.q., Bob's email)
Alice @‘ Bob
Cypher text
-v“ o /D-Bob's Private Key

Master Public Key + ID-Bob Decryption ﬂ

Encryption




02. Our Proposal

The scenario and our solution




i")\‘\c,,xum o/,
< QL
= A
5 )
o
g z
€
Z g u I I
b $
>
diterra®™®

The scenario




LT
o o
T %
2 &
, >
diterra®™®

The scenario: actors

* In our solution, we have the following types of entity:

o An user using a digital identity for authentication;

o A public identity digital system with Identity Provider |P;
o An IBE system with PKG;

o A Distributed Ledger allowing smart contracts (Ethereum).




\STUDI 5,
g &

%,

T %
g ¢
&

2 &

, >
Cditerra®®

The scenario: types of operation carried out by users
1. Digital Identity Registration:

A public digital identity is identified by the pair < username, P >, where /P is the
identifier of the Identity Provider and the username is a string.

Furthermore, any Public Digital ldentity System compliant with the elDAS defines
also an Universal ID UID.




(&) Our Proposal
The scenario: types of operation carried out by users

2. IBE private key gathering:

« As we said before, to obtain the IBE private key, a user must contact the PKG of
the IBE service and he must authenticate successfully to the PKG;

« Then, the PKG authenticates the user by an eIDAS-compliant scheme.




STUDID,
( ) O
= %
4, S

diterra®™®

The scenario: types of operation carried out by users

i . Service Provider Identity Provider
» |BE acts as a Service Provider; www.abc.com WWW.Xyz.com
y Resource |
« The structure is compliant with YR S
SAML 2 ' Access | Consumer Sign-On
’ ‘\fﬁefk/’ _ Service Service
A — b — 4
Access Redirect with | GET using Chafllenge
resource <AuthnRequest> <AuthnRequest> credgr:tials
POST signed RSigned User
< >
Supply e e o
\/ 1 - \/

, User or UA action | I
Browser ‘ :

[ User or UA action ;J

SAML 2 o »




\&TUDI
Q(vo" e
C
g G
g S
z
% £
2, >
diterra®™®

The scenario: types of operation carried out by users

3. Blockchain Binding

In this operation, an user associates his IBE public key IBEX with his blockchain a
ddress 4;

First, the user generates a pair of private and public blockchain keys;

The blockchain address A is computed as the cryptographic hash of the public key;




© Our Proposal
The scenario: types of operation carried out by users

3. Blockchain Binding

« Then, the user generates a transaction from A to A on the blockchain, having in the
data field < UID, E(A) >;

« UID is the Universal ID, while E(A) is the encryption of the blockchain address with
the IBE private key, so that only him can compute E(4);

« This transaction is called binding transaction;

« The user links his public digital identity to the blockchain address A.

18



REILTN
& <
=T °
4y, 3
“diterra®®

The scenario: types of operation carried out by users

4. Transaction

Let suppose that Alice wants to send to Bob v value (cryptocurrency, token, ...) with
a blockchain transaction/operation:

« First, she obtains the UIDg,, and she calculates the corresponding public key
IBEf;

« By calling a function of the smart contract, she looks for a binding transaction B w
ith < UlDg,p, E(Ag,p) > in the data field:

o If she finds it, she uses IBEXto deciphers E(4z,;,) to verify the authenticity of
the signature; 9



© Our Proposal
The scenario: types of operation carried out by users

4. Transaction

o If the check is ok, Alice has obtained Bob’s blockchain address Ap,;, and
she can proceed with the transaction.

 If Alice does not find the binding transaction B with < UIDg,, E(Ag,p) > in the
data field, this means that Bob exists but he does not joined yet the blockchain.

» So, what happens now?




© Our Proposal
The scenario: types of operation carried out by users

4. Transaction

» Alice generates a blockchain transaction from A,;;.. to a Smart Contract Ag
specifying both UIDg,;, and v;

« The smart contract will store this sleeping transaction from Ay;ic. 10 Ag,p With
value v.




REILTN
Q"o 6\%
g °
Y, >
“diterra®®

The scenario: types of operation carried out by users

5. Cashing

« This operation is carried out by an user who wants to receive the sleeping transa
ction sent to him before his registration (in our example, Bob).

« Bob generates a blockchain transaction, named cashing transaction from him to
the smart contract, specifying his UIDg,, in the data field (cash function in the sm
art contract code);

« If the smart contract finds a binding transaction corresponding, it computes the
IBEX calculated from the UIDg,,.

22
S



\STUDI 1,
&4 47&00
N o
g g
H g
% N
hedl(erra“'?

The scenario: types of operation carried out by users
5. Cashing

« To do that, the smart contract uses an Oracle (we used Oraclize), which returns th
e Ag,, from the UIDy,, following these steps:

o the Oracle looks for the IBE public key IBEX associated to UIDg,, and it tries t
o decipher E (Ag,;) With IBEX;

o If it obtains A4;,;,, the cashing process can continue because UIDg,, was succ
essfully verified;

o Else, the user who claimed the sleeping values was not really Bob.




\STUDI B,

Q(v(»" e

C

g o
g S

2 &

2, >
diterra®™®

The scenario: types of operation carried out by users

5. Cashing

« At the end, the smart contract extracts from the stored sleeping transactions those
sent to Bob (if they exists);

« Itis generated a new transaction to Aj,, for each sleeping transaction found.




WWVERS/7,
N Ay,

STUDI p,
M e

>
%dnenaﬂ’

3
o
4gy1vo O

© 00D U WN -

Our Proposal

Smart Contract

pragma solidity ~0.4.25;

import ”github.com/oraclize /ethereum—api/oraclizeAPI_0.4.25.s0l”7;
import ”github.com/Arachnid/solidity —stringutils/strings.sol”;

usingOraclize
idMapping /mapping between queryID and bool
mapping between UID and eth value to send

contract SleepingEther is {)
mapping(bytes32=>string
mapping(string=>uint) payUid;
address public addr;

using strings for x;

string pi;

function pay(string uid) public payable
payUid [uid] += msg.value; // add the ether addressed to uid

function cash (string uid) public payable{
if (payUid[uid]>0)
if (oraclize.getPrice("URL”) <= address(this).balance) {

pi = "URL”. toSlice Spiyer: mid, toSlice ());
bytes32 queryld oraclize_query § URL”, pi);
uidMapping [ queryldNauid ;
}
}
function __callback (bytes32 myid, string result, string uid) public {
if (msg.sender != oraclize_.cbAddress())
revert ();
bytes memory tempEmptyStringTest = bytes(result);
if(tempEmptyStringTest.length != 0){
addr = parseAddr(result);
uint tot= payUid[uidMapping [myid]];
addr. transfer (tot);
payUid [uid]=0;
}
}




o STUDI p,
e

GNVERS/
T
o,

Y,
editerras®”

7y
Yavivo o

03. Conclusion




Conclusion

 We enable on Ethereum the possibility to send money to users without the need to
know their blockchain address or when they are not registered yet on the service;

« The suitable use of the secure digital identity guarantees that only the correct user
receives money.

* In this work, we only treat the case in which a given amount of cryptocurrency is

transferred, but the transfer of tokens with identifier can be easily implemented by
using, for example, the interface ERC721.




DIIES Dipartimentoe di

INGEGNERIA

dell INFORMAZIONE. delle INFRASTRUTTURE e dell ENERGIA SOSTENIBILE

4y, >
Cditorra®’

Lorenzo Musarella



