A calculus for Bitcoin smart contracts

Massimo Bartoletti Roberto Zunino
Universita di Cagliari Universita di Trento

Perugia, 2018-02-01

Motivation

= Designing secure smart contracts is hard

= Ethereum attacks: TheDAO, Parity

= Bugs can have very large conseguences

= TheDAO: 3M ETH / ~50M$% then / ~3000M$% now / fork
= Parity: ~150M$ recently

= How to guarantee bug-free contracts?

Our Approach

= |dentify a class of smart contracts on Bitcoin

= Simple enough to study
= General enough for applications

= Design a specification language for that class

= BitML

= Build a “compiler” from the language to Bitcoin

= Symbolic specification to computational implementation

Leverage our formal model for Bitcoin (Financial Cryptography 2018)

BitML

A simple process calculus featuring:

= Stipulation: initial deposits & secret commitment
= Running a stipulated contract

= additional deposit

= withdrawal

= Constraints:

= signature
= secret reveal

= time deadline

Example: “Far West”

(last) SigA, sigB
A/IBTC _ sgasgs wA 3BTC
INIT
8. 2BTC ag 3BTC

SigA, sigB

int{A:1B B:2B}

(withdraw A
+withdraw B)

Example: Authorization

(last) oL siaB

A 1BTC- sighsgs wA, 3BTC
INIT

5. oBTC A amTC

, SigB

init{A:1B B:2B}

(B : withdraw A
+A : withdraw B)

Example: Incentive to Reveal

SigA, sigB
withdraw A — > A, 3BTC

(last) G

A, 1BTC ~— SigA, sigB
/

INIT ———»B,3BTC ,sigB

B, 2BTC

< ™ B, 3BTC sigA, sigb

init {A: 113, secreta B:2B}

(reveal a. withdraw A

+A : withdraw B
+aftert : withdraw)

Example: Fair Lottery

(general protocol: Bartoletti, Zunino - Bitcoin Workshop 2017)

init {A: 1B, secreta
B : 1B, secret b}

(reveal a.
(reveal b. if(a + b)7%2 =0
then withdraw A
else withdraw B
+after2 -t : withdraw A)
+aftert : withdraw B)

= Prove the compiler computationally sound

attacks at the Bitcoin level

—

attacks at the BitML level

= We can look for attacks in the simpler model, only

= This enables formal verification techniques

Thank you

10

Computational vs Formal Models

Messages

Network

Adversary
operations

Adversary
limits

Protocol
verification

Computational
bit strings

controlled by
the adversary

anything

complexity
probability

hard

Formal

symbolic terms
(e.g. enc(x,k))

controlled by
the adversary

fixed set
(enc, dec, ...)

no limits

easier
tool-supported
(& bridge results)

11

