On the security of the Blockchain BIX Protocol and Certificates

Federico Pintore¹

joint work with R. Longo, G. Rinaldo, M. Sala

Perugia, 1st February 2018

¹University of Trento

Federico Pintore (Trento)

Security of BIX Protocol

Perugia, 1st February 2018 1 / 10

Longo, R.; Pintore, F.; Rinaldo, G.; Sala, M.

"On the Security of the Blockchain BIX Protocol and Certificates"

in 2017 IEEE International Conference on Cyber Conflict: Defending the Core, Tallin, Estonia.

Digital identities

In a PKI (Public Key Infrastructure), to every digital identity corresponds a pair of cryptographic keys:

- the PUBLIC KEY;
- the PRIVATE KEY.

Digital identities are bound with corresponding public keys through **digital certificates**, that are managed by Certification Authorities (CAs) in a **centralized system**.

In 2015 Prof. Sead Muftic (KTH) proposed a blockchain-based protocol that allows distribution and management of digital certificates without the need of CAs.

Muftic, Sead. "Bix certificates: Cryptographic tokens for anonymous transactions based on certificates public ledger." Ledger 1 (2016): 19-37.

In 2015 Prof. Sead Muftic (KTH) proposed a blockchain-based protocol that allows distribution and management of digital certificates without the need of CAs.

Muftic, Sead. "*Bix certificates: Cryptographic tokens for anonymous transactions based on certificates public ledger.*" Ledger 1 (2016): 19-37.

New users **register** themselves to the system via an Instant Messaging (IM) system, obtaining a **unique identifier**, called *BIX Identifier*.

Users interact with the system via a **PC or smartphone application**.

Muftic's system is composed by **chains of BIX certificates**, named *BCL's* (Bix Certificates Ledger), where certificates are **cryptographically double-linked**.

Muftic's system is composed by **chains of BIX certificates**, named *BCL's* (Bix Certificates Ledger), where certificates are **cryptographically double-linked**.

After the registration, users can request the **issuing of a BIX certificate**, to be added to a preexisting *BCL* or to a new one.

	HEADER (H _i) - Sequence number - Version - Date	_
ISSUER (S _{i-1})	SUBJECT (S _i)	NEXT SUBJECT (S _{i+1})
- BIX ID of S _{i-1} - PublicKey (PK _{i-1})	- BIX ID of S _i - PublicKey (PK _i)	 BIX ID of S_{i+1} PublicKey (PK_{i+1})
Issuer Signature	Subject Signature	Next Subject Signature
BACKWARD CROSS-SIGNATURE		1

- Signature of (H_i||H(S_{i-1})||H(S_i)) by SK_{i-1}
- Signature of (H_i||H(S_{i-1})||H(S_i)) by SK_i

FORWARD CROSS-SIGNATURE

- Signature of (H_i||H(S_i)||H(S_{i+1})) by SK_i
- Signature of (H_i||H(S_i)||H(S_{i+1})) by SK_{i+1}

Federico Pintore (Trento)

Certificate request

The user that owns the tail certificate (standard certificate in which some fields are not populated) will become the **issuer for the next certificate**.

Attack scenario - 1

An attacker tries to attach his certificate to a preexisting *BCL* without interacting properly with the last user of the *BCL*.

Cryptographic schemes base their security upon the computational difficulty of solving some well-known mathematical problems.

Goal

Model the possible attacks on the protocol and prove that a successful breach implies the solution of a hard, well-known mathematical problem.

If the mathematical problem cannot be solved in reasonable time, a **contradiction is reached** and the protocol is secure.

Cryptographic primitives used in the protocol

A collision resistant hash function and a secure Digital Signature Scheme (ECDSA).

Collision resistance for R

A hash function H is collision resistance if, given $R \subset \{0,1\}^r$, there is no polynomial-time algorithm finding distinct $m_1, m_2 \in L$ such that $H(m_1) = H(m_2)$ with non-negligible probability.

Security of a Digital Signature Scheme

A Digital Signature Scheme DSS is said **secure** if an adversary *A*, given a public key *PK* - corresponding to a secret key *SK* - and some digital signatures $s_i = Sign(m_i, SK)$, is not able to identify a message $m \neq m_i \forall i$ and compute *s* such that Ver(m, s, PK) = True in polynomial-time complexity with non-negligible probability.

Theorem (Longo, _, Sala, Rinaldo - 2016)

Let A be an adversary that manages to succesfully perform the **first attack** with probability ϵ , then a simulator S might be built that, with probability at least ϵ , either solves the Collision Problem for the hash function relatively to the set L of all possible Subject fields, or breaks the Digital Signature Scheme.

Corollary (Longo, _ , Sala, Rinaldo - 2016)

If the Digital Signature Scheme used in Muftic's protocol is secure and the hash function is collision resistant for the set L, where L is the set of all possible Header fields, then the BIX protocol is secure against the first attack.