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Mathematical Fondation of
Bitcoin
Article Double Spend Races, in collaboration with
Ricardo Perez-Marco
arXiv:1702.02867 [cs.CR]

Satoshi Risk Tables, arXiv:1702.04421 [cs.CR]

Section 11. Calculations of Bitcoin: A Peer-to-Peer
Electronic Cash System, Satoshi Nakamoto, 2008.

Following a previous work by Meni Rosenfeld
Analysis of hashrate-based double-spending, 2012

� Correction of Satoshi's calculus for the
probability of success of a double spend attack

� Proof that �the probability drops exponentially
as the number of blocks the attacker has to
catch up with increases� (Satoshi)

� Closed form formula with Beta function for this
probability

� More accurate risk analysis knowing the time it
took to validate blocks.

� Underestimation of the probability of double-
spend attack
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Two groundbreaking ideas in
Bitcoin
� New framework for the design of a transaction

� Breakthrough in distributed system theory

Concept of �smart-contract� (prophetized by Nick
Szabo)
ScriptSig / ScriptPubKey (not in the white paper)

Use of proof-of-work (rediscovered by Adam Back) to
create a decentralized blockchain

No bibliography at all related with the distributed
system theory!

Main references in cryptography (Haber& Stornetta
for timestamps server)

Variation of two generals problem. Fisher, Lynch et
Paterson, 1985

Theorem. In a asynchronous model, there is no
deterministic algorithm to achieve consensus (if at
least one node can crash)

However, there are randomized consensus.

Randomization makes algorithm powerful...
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Proof-of-Work
Time consuming

Cost function. A string, D integer, x integer

F : C � [0; Dmax]� [0; N ] ¡! fTrue;Falseg
(A;D; x) 7¡! F(A;D; x)

Problem. Given A (string) and D (level of di�culty),
�nd x such that

F(A;D;x) = True (1)

Solution x (not necessarily unique) is a �proof-of-work�
called nonce. Problem possibly hard to solve. Use of
computational power to solve it.

Pricing via Processing or Combatting Junk Mail, C.
Dwork and M. Naor, (1993).
Denial-of-service counter measure technique in a
number of systems
Anti-spam tool

Hashcash, A Denial of Service Counter-Measure, A.
Back, preprint (2002)
Hashcash: a proof-of-work algorithm
Create a stamp to attach to mail
Cost functions proposed are di�erent
Solution of (1) by brute-force.
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Hash functions
Use of hash function h to create a puzzle
Example: F(A;D; x) =True if h(Ajx) starts with D
zeros and false else.

Rabin, Yuval, Merkle, late 70.
�Swiss army knife� of cryptography

� input of any size

� output of �xed-size

� easy to calculate (in O(n) if input is n-bit
string)

i. collision resistance

ii. preimage resistance

iii. second preimage resistance

One way function
Random Oracles are Practical: A Paradigm for
Designing E�cient Protocols, M. Bellare, P. Rogaway,
ACM Conference on Computer and Communications
Security (1993).
Based on block ciphers
Compression function
Merkle�Damgård construction
Message digest
Commitments
Puzzle
Digital signature
SHA-1, MD5 broken
SHA-2
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Test of SHA256
Images are uniform & Easy to compute

Proposition. If h is a hash function, then the time
of resolution before getting a �proof-of-work� for a
problem of di�culty D has an exponential distribution.

Example. Problem: �nd x such that SHA256(ajx)
starts with 4 zeros with a an arbitrary string. Sample
(�i). Mean � 4 sec.

However, it is not clear that the distribution
is exponential. Tests Cramer-von-Mises and
Kolmogorov-Smirnov fail if size(sample)>6000 with R
software...
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Interblock times
Hash function h= SHA256 �SHA256

F(A;D;x) = 1
h(AjDjx)< 2224

D

A = x1jx2jx3jx4j
x1 = Version
x2 = HashPreviousBlock
x3 = HashMerkleRoot
x4 = Timestamp

Block Header =AjD jx. Di�culty adjusted such that
the time of resolution is �600 sec.
Example. Hash Genesis block & Block 500000
000000000019d6689c085ae165831e934�763ae46a2a6c172b3f1b60a8ce26f
00000000000000000024fb37364cbf81fd49cc2d51c09c75c35433c3a1945d04

Blocksci (Princeton) github.com/citp/BlockSci
Open-source software platform for Blockchain analysis

Example. Between block 180000 and block 190000

However in general, KS & CVM tests fail...
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Mathematics of mining
The time it takes to mine a block is memoryless

P[T > t1+ t2jT > t2] = P[T > t1]

Proposition. The random variable T has the
exponential distribution with parameter �= 1

600 i.e.,

fT (t) = � e¡�t

Parameter � seen as a mining speed, E[T ] = 1

�
.

De�nition. Let N(t) be the number of blocks already
mined at t-time. Start is at t=0.

Proposition. The random process N is a Poisson
process with parameter � i.e.,

P[N(t)= k] = (� t)k

k!
e¡�t

Notation. Two group of miners. The letters T ;�;Sn;
N (resp. T 0; �0;Sn0 ;N) are reserved for honest miners
(resp. attacker).

Proposition. Let p :=P[T<T 0] and q=1¡ p. Then,

� = p

�0
�0 = q

�0

with �0= 600 sec.
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Classical Double Spend Attack
No eclips attack (kind of Sybill's attack)

What is a double spend?
A single output may not be used as an input to
multiple transactions.

� T =0. A merchant M receives a transaction tx
from A (= attacker). Transaction tx is issued
from an UTXO tx0

� Honest Miners start mining openly,
transparently

� Attacker A starts mining secretly

� One block of honest miners include tx

� No block of attacker include tx

� On the contrary, one blocks of the attacker
includes another transaction tx' con�icting
with tx from same UTXO tx0

� As soon as the z-th block has been mined, M
sends his good to A

� A keeps on mining secretly

� As soon as A has mined a blockchain with a
lenght greater than the o�cial one, A broadcast
his blockchain to the network

� Transaction tx has disappeared from the
o�cial blockchain.

Free Lunch!
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Nakamoto's Analysis
Some de�nitions

De�nition. Let n2Z. We denote by qn the probability
of the attacker A to catch up honest miners whereas
A's blockchain is n blocks behind.

Then, qn=
�
q

p

�n
if n> 0 and qn=1 else.

De�nition. For, z2N, the probability of success of a
double-spending attack is denoted by P (z).

Note. The probability P (z) is evaluated at t=0. The
double-spending attack cannot be successful before t=
Sz.

Formula for P (z)
When t = Sz, the attacker has mined N 0(Sz) blocks.
By conditionning on N 0(Sz), we get:

P (z) =
X
k=0

1

P[N 0(Sz)= k] qz¡k

= P[N 0(Sz)> z] +
X
k=0

z¡1

P[N 0(Sz)= k] qz¡k

= 1¡
X
k=0

z¡1

P[N 0(Sz)= k]

+
X
k=0

z¡1

P[N 0(Sz)= k] qz¡k

= 1¡
X
k=0

z¡1

P[N 0(Sz)= k] (1¡ qz¡k)
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Satoshi's approximation
White paper, Section 11 Calculations
According to Satoshi,

Sz � E[Sz]

and

N 0(Sz) � N 0(E[Sz])
� N 0(z �E[T ])

� N 0
�
z � �0

p

�
So, N 0(Sz)�Poisson process with parameter � given
by

� = �0 � z � �0
p

= z � q
p

De�nition. We denote by PSN(z) the (false) formula
obtained by Satoshi in Bitcoin's white paper.

Then,

PSN(z) = 1¡
X
k=0

z¡1
�k e¡�

k!

�
1¡

�
q
p

�
z¡k�

However, P (z)=PSN(z) since N 0(Sz)=N 0(E[Sz]).
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A correct analysis of double-
spending attack

Meni Rosenfeld's correction

Set Xn :=N0(Sn).

Proposition. The random variableXn has a negative
binomial distribution with parameters (n; p), i.e., for
k> 0

P[Xn= k] = pn qk
�
k+n¡ 1

k

�

�The attacker's potential progress� is not �a Poisson
distribution with expected value �= z q

p
�...

Proposition. The probability of success of a double-
spending attack is

P (z) = 1¡
X
k=0

z¡1

(pz qk¡ qz pk)
�
k+ z¡ 1

k

�

Numerical Applications

For q= 0.1,
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z P (z) PSN(z)
0 1 1
1 0.2 0.2045873
2 0.0560000 0.0509779
3 0.0171200 0.0131722
4 0.0054560 0.0034552
5 0.0017818 0.0009137
6 0.0005914 0.0002428
7 0.0001986 0.0000647
8 0.0000673 0.0000173
9 0.0000229 0.0000046
10 0.0000079 0.0000012

For q= 0.3,

z P (z) PSN(z)
0 1 1
5 0.1976173 0.1773523
10 0.0651067 0.0416605
15 0.0233077 0.0101008
20 0.0086739 0.0024804
25 0.0033027 0.0006132
30 0.0012769 0.0001522
35 0.0004991 0.0000379
40 0.0001967 0.0000095

Solving for P less than 0.1%:
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q z zSN
0.1 6 5
0.15 9 8
0.20 18 11
0.25 20 15
0.3 32 24
0.35 58 41
0.40 133 89

Satoshi underestimates P (z)...
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A closed form formula

De�nition. The incomplete Beta function is
de�ned for a; b> 0 and x2 [0; 1] by

Bx(a; b) :=
Z
0

x

ta¡1(1¡ t)b¡1dt

The regularized Beta function is de�ned by

Ix(a; b) := Bx(a; b)
B1(a; b)

Classical result: for a; b> 0; B(a; b)= ¡(a) ¡(b)

¡(a+ b)

Theorem. We have:

P (z) = Is(z; 1/2)

with s=4 p q < 1.

Proof. It turns out that the cumulative distribution
function of a negative binomial random variable X
(same notation as above) is

FX(k) = P[X 6 k]
= 1¡ Ip(k+1; z)

By parts,

Ip(k; z)¡ Ip(k+1; z) = pk qz

kB(k; z)

So,

P (z) = 1¡ Ip(z; z)+ Iq(z; z)
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Classical symmetry relation for Beta function:

Ip(a; b)+ Iq(b; a) = 1

(change of variable t 7! 1¡ t in the de�nition). So,

Ip(z; z)+ Iq(z; z) = 1

We also use:

Iq(z; z) = 1
2
Is(z; 1/2)

with s=4 p q. �

Classical function pbeta implemented in R gives the
true double-spending attack success probability.

Asymptotic analysis
According to Satoshi,

Given our assumption that p > q, the
probability drops exponentially as the
number of blocks the attacker has to
catch up with increases.

Theorem. When z!1, we have:

P (z) � sz

p(1¡ s) z
p

with s=4 p q < 1.
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A more accurate risk analysis

The merchant waits for z blocks. Once it has been
done, he knows how long it took... Denote this number
by �1. In average, it should take E[zT ] = z �0

p
.

De�nition. Set � := p �1
z �0

Dimensionless parameter.

Satoshi's approximation: �=1...

Instead of computing P (z), let us compute P (z; �).

Probability for a successful double-spending attack
knowing that z blocks have been mined by the honest
miners at Sz= �1.

Note. We have PSN(z)=P (z; 1).

Note. Two di�erent probabilities.

� Theoretical probability P (z) calculated at T =
0 by the attacker or the merchant.

� concrete probability P (z; �) calculated at T =
�1 by the merchant .
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Number of bocks mined by the attacker at T = �1
unknown to the merchant = Poisson distribution
parameter �(z; �):

�(z; �) = �0 �1

= q
�0
� z � �0

p

= z q
p
�

i.e.,

P[N 0(�1)= k] =

�
z q

p
�
�
k

k!
e
¡zq

p
�

De�nition. The regularized Gamma function is
de�ned by:

¡(s; x) : =
Z
x

+1
ts¡1 e¡tdt

The regularized incomplete Gamma function is:

Q(s; x) := ¡(s; x)
¡(s)

It turns out that

Q(z; �) =
X
k=0

z¡1
�k

k!
e¡�

So,

Theorem. We have:

P (z; �) = 1¡Q
�
z;
� z q
p

�
+
�
q
p

�z
e
�z

p¡q
p Q(z; � z)
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Proof. We have:

P (z; �) = P[N 0(�1)> z] +
X
k=0

z¡1

P[N 0(�1)= k] qz¡k

= 1¡
X
k=0

z¡1
�(z; �)k

k!
e¡�(z;�)

+
X
k=0

z¡1 �
q
p

�
z¡k

� �(z; �)
k

k!
e¡�(z;�)

= 1¡Q
�
z;
� z q
p

�
+
�
q
p

�z
e
�z

p¡q
p Q(z; � z)

�

Asymptotics Analysis

Proposition. We have PSN (z)� e
¡zc

�
q

p

�
2

with

c(�) := �¡ 1¡ ln �

More generally, we have 5 di�erent regimes.

Proposition 1. When z!+1, we have:

� For 0<�< 1; P (z; �)� 1

1¡� q

p

1

2 p z
p e

¡zc
�
�
q

p

�

� For �=1; P (z; 1)=PSN(z)� e
¡zc

�
q

p

�
2

� For 1<�< p

q
,

P (z; �)�
�
�
1¡ q

p

�
(�¡ 1)

�
1¡� q

p

� 1
2 p z

p e
¡zc

�
�
q

p

�
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� For �= p

q
, P

�
z;

p

q

�
! 1

2
and

P

�
z;
p
q

�
¡ 1
2
� 1

2 p z
p

�
1
3
+ q
p¡ q

�
� For �> p

q
, P (z; �)! 1 and

1¡P (z; �)�
�
�
1¡ q

p

�
�
�
q

p
¡ 1

�
(�¡ 1)

1
2 p z

p e
¡zc

�
�
q

p

�

Comparison between P (z) and
PSN(z)

Asymptotic behaviours
The asymptotic behaviours of P (z) and PSN(z) are
quite di�erent

Proposition. We have PSN(z)�P (z)

Bounds for P (z) and PSN(z)

Goal: compute an explicit rank z0 such that

PSN(z) < P (z)

for all z > z0.

Upper and lower bounds for P (z)
Remember that s=4 p q.
We'll use Gautschi's inequalities.
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Proposition 2. For any z > 1,

z

z+1

r
sz

p z
p 6P (z)6 sz

p (1¡ s) z
p

An upper bound for PSN(z)

Lemma. Let z 2N� and �2R+
� . We have:

i. If �2 ]0; 1[, then

1¡Q(z; � z) <
1

1¡�
1
2 p z

p e¡z(�¡1¡ln�)

ii. If �=1; Q(z; z)< 1

2
.

Proposition. We have

PSN(z) <
1

1¡ q

p

1
2 p z

p e
¡zc

�
q

p

�
+ 1
2
e
¡zc

�
q

p

�

with c(�) := �¡ 1¡ ln �.

An explicit rank z0

Theorem. Let z 2 N�. A su�cient condition to get
PSN(z)<P (z) is z > z0 with

z0 := Max

0B@ 2

p
�
1¡ q

p

�
2
;

1
2 2
p ¡

1+ 1

2
p

2

ln
�
2  0
p

�
 0

1CA
with

 0 := q
p
¡ 1¡ ln

�
q
p

�
¡ ln

�
1

4 p q

�
> 0

21



Conclusion. What sould the
merchant do?
Set P�(z; t) = probability of success of a double spend
attack knowing that z blocks have been validated
before t-date.

Shipment condition: Good will be sent to the buyer
as soon as P�(z; t)<0.1% for any q <0.2 (for instance)
where t= time used to mine z blocks and
cf Satoshi Risk Tables.

Shipment_time = Infft > 0/P�(N(t); t)<"g.

On average, this will happen after z blocks have been
validated and P (z)<".

Proposition. One has P (z)=E[P (z;�)].

and � := pSz
z �0

as above.

So, by Markov inequality,

8"> 0; P[P (z;�)>"] <
P (z)
"

! 0

Note. If � > 1, P[�> �]� 1

�¡ 1
1

2 p z
p e¡zc(�). Other

asymptotics in DSR.

So, P[Shipment�Time<+1] = 1.
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Submissions
Long list of rejections from

� arxiv.org (section probability)

� European Journal of Operational Research: �I
came to conclusion that your paper does not �t
the scope of EJOR. Your list of references also
gives support to this conclusion.�, Emanuele
Borgonovo

� Acta Informatica: �[...]the list of references, [...]
is comparably short and does not refer to any
paper of the typical Acta Informatica areas.�,
Christel Baier

� SIAM Journal on Financial Mathematics:
�Overall, the authors basically just recast really
basic probability results using bitcoin jargons.
I think rejection outright is the right decision.�,
Jean-Pierre Fouque

� Journal of Economic Theory: �The paper does
not contribute to any ongoing conversations in
economics.�, Laura Veldkamp

Finally submitted to International Journal of
Theoretical and Applied Finance: �We will send
the paper to referees and the process will take
approximately 5-6 months.�
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