Distributed Ledger Technology Workshop

1° febbraio 2018

Università degli Studi di Perugia

Blocks and **Fees** in **Bitcoin** [Observationally Speaking]

Marco Benedetti, Gennaro Catapano, Francesco **De Sclavis***, Roberto **Favaroni**, Giuseppe Galano, Andrea Gentili, Marco Mori

[NAME].[SURNAME]@bancaditalia.it

*Intern at ART

The **opinions** expressed and conclusions drawn are those of the authors and do not necessarily reflect the views of the Bank of Italy.

Virtual currency

- aka, cryptocurrency
- aka, mathematical currency
- internal unit of account

Mining

- Predefined supply curve
- Decreasing rate of growth
- "Seigniorage" to participants

No double-spending

Prevent the same token from being used twice or more

Distributed application

- e.g., Bitcoin
- several other (monetary & non-monetary) proposals

Consensus protocol

"In case of multiple/inconsistent blockchains, every node must prefer the one backed by the most work"

User addresses/identities

- self-generated
- no central registry; no clearance Based on:
- ➡Public-Key Cryptography

Proof of work

"Contributions accepted only if corroborated by evidence of hard, express, dedicated work (fee)" Based on:

→Cryptographic Hash Functions

Blockchain

Virtual currency

- aka, cryptocurrency
- aka, mathematical currency
- internal unit of account

Mining

- Predefined supply curve
- Decreasing rate of growth
- "Seigniorage" to participants

No double-spending

Prevent the same token from being used twice or more

Distributed application

- e.g., Bitcoin
- several other (monetary & non-monetary) proposals

Consensus protocol

"In case of multiple/inconsistent blockchains, every node must prefer the one backed by the most work"

User addresses/identities

- self-generated
- no central registry; no clearance Based on:
- ➡Public-Key Cryptography

Proof of work

"Contributions accepted only if corroborated by evidence of hard, express, dedicated work (fee)" Based on:

→Cryptographic Hash Functions

Blockchain

Virtual currency

- aka, cryptocurrency
- aka, mathematical currency
- internal unit of account

Mining

- Predefined supply curve
- Decreasing rate of growth
- "Seigniorage" to participants

No double-spending

Prevent the same token from being used twice or more

Distributed application

- e.g., Bitcoin
- several other (monetary & non-monetary) proposals

Consensus protocol

"In case of multiple/inconsistent blockchains, every node must prefer the one backed by the most work"

User addresses/identities

- self-generated
- no central registry; no clearance Based on:
- ➡Public-Key Cryptography

Proof of work

"Contributions accepted only if corroborated by evidence of hard, express, dedicated work (fee)" Based on:

→Cryptographic Hash Functions

Blockchain

Mining revenues (2011-17)

Mining revenues (2011-17)

Mechanics of **BTC confirmation**

New incoming transaction requests (0-20k per hour)

Mempool i.e., "backlog", of requests (0-100k elements)

Unlike in traditional payment systems, in BTC.

• Confirmed volume per unit of time is a scarce resource: - No more than **6MB/hour** worth of transactions on avg. • This ensues from two params **locked** at protocol level: - fixed block size (~1MB, i.e. 10⁶ minus headers etc.) controlled speed of block confirmation (every 10' on avg.)

Mechanics of **BTC confirmation**

Unlike in traditional payment systems, in BTC...

- not by the "service providers" (miners);
- transactions indefinitely, as they wish.

• Confirmed volume per unit of time is a scarce resource: - No more than **6MB/hour** worth of transactions on avg. • This ensues from two params **locked** at protocol level: - fixed block size (~1MB, i.e. 10⁶ minus headers etc.) - controlled speed of block confirmation (every 10' on avg.)

The fee is freely chosen by the customer, tip-like,

Dually, miners are free to process or put on hold

Economics of **BTC fees**

Unlike in traditional payment systems, in BTC...

- - -
- not by the "service providers" (miners);
- transactions indefinitely, as they wish.

How does a **fluid market** adjust to these conditions?

What do Bitcoin **users** experience?

What does a "rational miner" do under these conditions?

• Confirmed volume per unit of time is a scarce resource: - No more than **6MB/hour** worth of transactions on avg. • This ensues from two params **locked** at protocol level: - fixed block size (~1MB, i.e. 10⁶ minus headers etc.) controlled speed of block confirmation (every 10' on avg.)

The fee is freely chosen by the customer, tip-like,

Dually, miners are free to process or put on hold

Economics of **BTC fees**

Unlike in traditional payment systems, in BTC...

- not by the "service providers" (miners);
- transactions indefinitely, as they wish.

How does a fluid market adjust to these conditions?

What do Bitcoin users experience?

What does a "rational miner" do under these conditions?

- (d) fees get too high for some use cases;

(e) tries to fill each block with the "**best**" transactions (new competition for fees in addition to block mining).

Confirmed volume per unit of time is a scarce resource: - No more than **6MB/hour** worth of transactions on avg. • This ensues from two params **locked** at protocol level: - fixed block size (~1MB, i.e. 10⁶ minus headers etc.) - controlled speed of block confirmation (every 10' on avg.)

The fee is freely chosen by the customer, tip-like,

Dually, miners are free to process or put on hold

(a) it reasons in terms of "fee paid per byte occupied" (whereas the transacted amount plays little/no role); (b) fees rise **under large demand** of transactional capacity;

(c) different "QoS" levels emerge for different fee "tiers";

Does the market reason in terms of "fee paid per byte occupied" γ (whereas the transacted amount plays little/no role)

[Dec. 2017: 4.4k blocks, 10.5M transactions]

Mining revenues (2017) (b)

Mempool size VS block fees (b)

Mempool size VS block fees (b)

Inhale [transactions] Demand exceeds supply Mempool inflates Fees per byte increase

Mempool deflates Fees per byte decrease

Mempool VS fees VS Blockchain(b)

Up to 25 25-50 50-100 100-150 Over 150

[satoshi/byte]

Mempool VS fees VS Blockchain(b) Breath of the Wild Bitcoin **Inhale** [transactions] Demand exceeds supply Mempool inflates Mempool deflates Fees per byte increase

[Random sample of **250k** transactions sent & confirmed during April 2017]

 $O \xrightarrow{2}_{O} \xrightarrow{2}_{O} O \xrightarrow{2}_{O} \xrightarrow{2}_{$

Fees may suddenly become too high (>5eu/tr) for many common use cases (e.g., retail payments)

AVERAGE FEE PER TRANSACTION IN BTC AND EUR

 40%
 30%
 20%
 10%

AVERAGE FEE PER TRANSACTION IN BTC AND EUR

 40%
 10%

Given n transactions with fees v_1, \ldots, v_n (satoshi) and size w_1, \ldots, w_n (bytes), let C be the capacity of the block (in bytes); then, decide whether the *i*-th transaction should be included ($x_i = 1$) or not ($x_i = 0$) in so as to:

Given n transactions with fees v_1, \ldots, v_n (satoshi) and size w_1, \ldots, w_n (bytes), let C be the capacity of the block (in bytes); then, decide whether the *i*-th transaction should be included ($x_i = 1$) or not ($x_i = 0$) in so as to:

maximize
$$\sum_{i=1}^n x_i \cdot v_i$$

subject to $\sum_{i=1}^n x_i \cdot w_i \leq C$

Let's make the **best** possible use of the limited resource (space) available

0-1 Knapsack problem

Given n transactions with fees v_1, \ldots, v_n (satoshi) and size w_1, \ldots, w_n (bytes), let C be the capacity of the block (in bytes); then, decide whether the *i*-th transaction should be included ($x_i = 1$) or not ($x_i = 0$) in so as to:

maximize
$$\sum_{i=1}^n x_i \cdot v_i$$

subject to $\sum_{i=1}^n x_i \cdot w_i \leq C$

Let's make the **best** possible use of the limited resource (space) available

subject to
$$x_i \leq x_j \; \forall (i,j) \in E$$

0-1 Knapsack problem

actions sal **Precedence constrained**

Given n transactions with fees v_1, \ldots, v_n (satoshi) and size w_1, \ldots, w_n (bytes), let C be the capacity of the block (in bytes); then, decide whether the *i*-th transaction should be included ($x_i = 1$) or not ($x_i = 0$) in so as to:

maximize $\sum x_i \cdot v_i$ subject to $\sum x_i \cdot w_i \leq C$

subject to $x_i \leq x_j \ \forall (i,j) \in E$

Let's make the **best** possible use of the limited resource (space) available

Don't include transactions that miss any **causal** preconditions;

E is a transitive relation

0-1 Knapsack problem

Precedence constrained

Given n transactions with fees v_1, \ldots, v_n (satoshi) and size w_1, \ldots, w_n (bytes), let C be the capacity of the block (in bytes); then, decide whether the *i*-th transaction should be included ($x_i = 1$) or not ($x_i = 0$) in so as to:

maximize
$$\sum_{i=1}^n x_i \cdot v_i$$

subject to $\sum_{i=1}^n x_i \cdot w_i \leq C$

subject to $x_i \leq x_j \ \forall (i,j) \in E$

Let's make the **best** possible use of the limited resource (space) available

Don't include trans that miss any caus preconditions; E is a transitive rela

Filter-out double spending; D conta couples of mutually inconsistent transaction

subject to $x_i + x_j \leq 1 \ \forall (i,j) \in D$

0-1 Knapsack problem

actions al	Precedence constrained
ation	
ins all ⁄ ctions	Maximum independent set problem

Given n transactions with fees v_1, \ldots, v_n (satoshi) and size w_1, \ldots, w_n (bytes), let C be the capacity of the block (in bytes); then, decide whether the *i*-th transaction should be included ($x_i = 1$) or not ($x_i = 0$) in so as to:

maximize
$$\sum_{i=1}^n x_i \cdot v_i$$

subject to $\sum_{i=1}^n x_i \cdot w_i \leq C$

subject to $x_i \leq x_j \ \forall (i,j) \in E$

Let's make the **best** possible use of the limited resource (space) available

Don't include trans that miss any caus preconditions; E is a transitive rela

Filter-out **double** spending; D conta couples of mutually inconsistent transa

New transactions a and have to be take account on the fly

subject to
$$x_i + x_j \leq 1 \ \forall (i,j) \in D$$

$$(w_{n+1}, v_{n+1}), (w_{n+2}, v_{n+2}), \dots$$

0-1 Knapsack problem

actions al	Precedence constrained
ation	
ins all / .ctions	Maximum independent set problem
arrive en into	Online, multi-period

Given n transactions with fees v_1, \ldots, v_n (satoshi) and size w_1, \ldots, w_n (bytes), let C be the capacity of the block (in bytes); then, decide whether the *i*-th transaction should be included ($x_i = 1$) or not ($x_i = 0$) in so as to:

lard. Some variants have (F)PTAS. ce? tice, too. Typical instance is like this: s, w_i in 100-100k, v_i in 0-10M, C~1000k

? nows it **isn't**; strongly onstrained instances

plied by nodes neutralises this case

transactions arrive (avg) to miners in s (avg) to confirm a block [2017 values]

Given n transactions with fees v_1, \ldots, v_n (satoshi) and size w_1, \ldots, w_n (bytes), let C be the capacity of the block (in bytes); then, decide whether the *i*-th transaction should be included ($x_i = 1$) or not ($x_i = 0$) in so as to:

Known to be NP-H Tractable in practi \bigcirc Difficult in pract $n \approx 50$ k objects	maximize $\sum_{i=1}^n x_i \cdot v_i$ subject to $\sum_{i=1}^n x_i \cdot w_i \leq C$
$\in E \qquad \begin{array}{l} \text{Is this uncommon} \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	subject to $x_i \leq x_j \; orall (i,j) \in E$
<i>∈ D</i> Is this infrequent? ♥ Yes; policy app	$ extsf{subject to } x_i + x_j \leq 1 \; orall (i,j) \in D$
 Is this negligible? No: 1,860 new the time it takes 	$(w_{n+1}, v_{n+1}), (w_{n+2}, v_{n+2}), \dots$

lard. Some variants have (F)PTAS. ce? tice, too. Typical instance is like this: s, w_i in 100-100k, v_i in 0-10M, C~1000k

nows it **isn't**; strongly onstrained instances

lied by nodes neutralises this case

transactions arrive (avg) to miners in s (avg) to confirm a block [2017 values]

Given n transactions with fees v_1, \ldots, v_n (satoshi) and size w_1, \ldots, w_n (bytes), let C be the capacity of the block (in bytes); then, decide whether the *i*-th transaction should be included ($x_i = 1$) or not ($x_i = 0$) in so as to:

Random sample of mempool/block pairs from 2017 (pre-segwit)

$$C \quad x_i \le x_j \; \forall (i,j) \in E$$

Distributed Ledger Technology Workshop

1° febbraio 2018

Università degli Studi di Perugia

Blocks and **Fees** in **Bitcoin** [Observationally Speaking]

Marco Benedetti, Gennaro Catapano, Francesco **De Sclavis***, Roberto **Favaroni**, Giuseppe Galano, Andrea Gentili, Marco Mori

[NAME].[SURNAME]@bancaditalia.it

*Intern at ART

The **opinions** expressed and conclusions drawn are those of the authors and do not necessarily reflect the views of the Bank of Italy.

Thank you for your attention Any questions?

The **opinions** expressed and conclusions drawn are those of the authors and do not necessarily reflect the views of the Bank of Italy.

Università degli Studi di Perugia