
Towards the Automated Verification of

Smart Contracts

Chiara Braghin, Elvinia Riccobene, Simone Valentini
Università degli Studi di Milano

March 31, 2023

Ethereum [5] was the first blockchain implementing the the idea of smart
contracts envisioned by Nick Szabo back in 1996 [9]. The combination of a
distributed ledger with the ability to execute immutable code without the need
of a trusted third party when predetermined conditions are met opened to a
lot of potential new use cases. Nowadays, smart contracts are used to auto-
mate and enforce contractual terms between two or more parties entering the
agreement, in scenarios ranging from financial trades and services, to insurance,
credit authorization, legal processes, and even crowdfunding agreements.

As a consequence, both the number of blockchains supporting smart con-
tracts and, unfortunately, the number of attacks have grown with expensive
consequences. For example, the infamous DAO exploit [1] resulted in the loss
of almost $60 million worth of Ether. Logic errors tend to be one of the most
common types of blockchain smart contract vulnerabilities. They may include
typographical errors, misinterpretation of specifications, or more serious pro-
gramming errors that decrease the security of smart contracts. Since smart
contracts cannot be deleted by default, and interactions with them are irre-
versible, the only remedy for this type of errors is to hard-fork the blockchain
and revert one of the forks back to the state before the incorrect smart contract
was executed. However, this remedy itself is devastating as it defeats the core
values of blockchain, such as immutability and decentralized trust.

Thus, it is of paramount importance to guarantee the correctness of con-
tracts at deployment time in order to avoid catastrophic events and huge loss of
money. Formal verification, which uses formal methods for specifying, design-
ing, and verifying programs, has been used for years to ensure correctness of
critical hardware and software systems. When used for smart contracts, formal
verification can prove that a contract’s business logic meets a predefined spec-
ification. With respect to other techniques such as testing or code inspection,
formal verification gives stronger guarantees that a smart contract is function-
ally correct. This comes at the expense of other challenges such as (i) a difficult
modelling language, making the writing of the model error-prone as well; (ii)
a verification process that might require user interaction and knowledge of the
tool’s internal; (iii) the verification results difficult to interpret and to bind to
the original protocol; (iv) scalability.

Several studies have been performed to identify current topics and chal-
lenges of smart contracts and different approaches have been proposed, espe-
cially towards the formal verification of Solidity smart contracts [6]. However,

1

the proposed approaches either target a limited number of vulnerabilities, or
use complex notations that may lead to incorrect formal specifications [7, 8].

We are currently investigating the usage of the Abstract State Machine for-
mal method [3, 2] for the specification and verification of smart contracts. ASMs
offer several advantages as formal method: (1) due to their pseudo-code format,
they can be easily understood by practitioners and can be used for high-level
programming ; (2) they allow for system specification at any desired level of ab-
straction and with different computational paradigms, from a single agent to
distributed multiple agents; (3) they are executable models, so they are suitable
also for lighter forms of model analysis such as simple simulation to check model
consistency w.r.t. system requirements; (4) the ASMETA framework allows for
an integrated usage of tools for different forms of model analysis (e.g., ASM
models can be validated in terms of model simulation, animation, and scenarios
execution. It is also possible to verify properties expressed in temporal logic by
means of model checking).

We have been successfully using ASMs for the verification of security pro-
tocols [4], thus we expect to be able to apply the lessons learned also to the
smart contract context, and prove their correctness also against a large number
of different attacks and attackers.

References

[1] N. Alchemy. A short history of smart contract hacks on ethereum: A.k.a.
why you need a smart contract security audit, 2019.

[2] Egon Börger and Alexander Raschke. Modeling Companion for Software
Practitioners. Springer, 2018.

[3] Egon Börger and Robert Stärk. Abstract State Machines: A Method for
High-Level System Design and Analysis. Springer Verlag, 2003.

[4] Chiara Braghin, Mario Lilli, and Elvinia Riccobene. A model-based ap-
proach for vulnerability analysis of iot security protocols: The z-wave case
study. Computers Security, 127:103037, 2023.

[5] E. Foundation. Ethereum, 2017.

[6] Ikram Garfatta, Kais Klai, Walid Gaaloul, and Mohamed Graiet. A Survey
on Formal Verification for Solidity Smart Contracts. In Proceedings of the
2021 Australasian Computer Science Week Multiconference, ACSW ’21, New
York, NY, USA, 2021. Association for Computing Machinery.

[7] Gabor Madl, Luis Bathen, German Flores, and Divyesh Jadav. Formal
Verification of Smart Contracts Using Interface Automata. In 2019 IEEE
International Conference on Blockchain (Blockchain), pages 556–563, 2019.

[8] Anastasia Mavridou and Aron Laszka. Designing Secure Ethereum Smart
Contracts: A Finite State Machine Based Approach. In Sarah Meiklejohn
and Kazue Sako, editors, Financial Cryptography and Data Security, pages
523–540, Berlin, Heidelberg, 2018. Springer Berlin Heidelberg.

[9] Nick Szabo. Smart contracts: building blocks for digital markets. EX-
TROPY: The Journal of Transhumanist Thought,(16), 18(2):28, 1996.

2

